2,921 research outputs found

    On the quantum and classical scattering times due to charged dislocations in an impure electron gas

    Full text link
    We derive the ratio of transport and single particle relaxation times in three and two - dimensional electron gases due to scattering from charged dislocations in semiconductors. The results are compared to the respective relaxation times due to randomly placed charged impurities. We find that the ratio is larger than the case of ionized impurity scattering in both three and two-dimensional electron transport.Comment: 4 pages, 3 figure

    Magnetotransport properties of a polarization-doped three-dimensional electron slab

    Full text link
    We present evidence of strong Shubnikov-de-Haas magnetoresistance oscillations in a polarization-doped degenerate three-dimensional electron slab in an Alx_{x}Ga1x_{1-x}N semiconductor system. The degenerate free carriers are generated by a novel technique by grading a polar alloy semiconductor with spatially changing polarization. Analysis of the magnetotransport data enables us to extract an effective mass of m=0.19m0m^{\star}=0.19 m_{0} and a quantum scattering time of τq=0.3ps\tau_{q}= 0.3 ps. Analysis of scattering processes helps us extract an alloy scattering parameter for the Alx_{x}Ga1x_{1-x}N material system to be V0=1.8eVV_{0}=1.8eV

    SU(2) Chiral Sigma Model Study of Phase Transition in Hybrid Stars

    Full text link
    We use a modified SU(2) chiral sigma model to study nuclear matter component and simple bag model for quark matter constituting a neutron star. We also study the phase transition of nuclear matter to quark matter with the mixed phase characterized by two conserved charges in the interior of highly dense neutron stars. Stable solutions of Tolman-Oppenheimer-Volkoff equations representing hybrid stars are obtained with a maximum mass of 1.67MM_{\odot} and radius around 8.9 km.Comment: 14 pages, 5 figure

    Determination of the lowest energy structure of Ag8_8 from first-principles calculations

    Full text link
    The ground-state electronic and structural properties, and the electronic excitations of the lowest energy isomers of the Ag8_8 cluster are calculated using density functional theory (DFT) and time-dependent DFT (TDDFT) in real time and real space scheme, respectively. The optical spectra provided by TDDFT predict that the D2d_{2d} dodecahedron isomer is the structural minimum of Ag8_8 cluster. Indeed, it is borne out by the experimental findings.Comment: 4 pages, 2 figures. Accepted in Physical Review A as a brief repor

    Theoretical study of deep-defect states in bulk PbTe and in thin films

    Get PDF
    The nature of neutral defect states in PbTe, a narrow band-gap semiconductor, has been studied using density functional theory and supercell models. We find that the defect states associated with different substitutional impurities and native point defects found in bulk PbTe are preserved in the film geometry, but get modified as one goes from the surface to the subsurface layers and then to the bulklike layers. These modifications, which usually occur in the neighborhood of the band gap, will impact the transport properties of the films. Energetic studies of different impurities and native defects embedded in bulk PbTe and in different layers of PbTe films show different energy landscapes, depending on the nature of the defects. This has important implications in doping mechanism and the distribution of the defects in bulk PbTe with grain boundaries and in PbTe nanostructures. Available experimental data are discussed in the light of our theoretical results. Our results in pure PbTe(001) films are consistent with earlier works and with experiment

    Acupuncture randomized trials (ART) in patients with chronic low back pain and osteoarthritis of the knee - Design and protocols

    Get PDF
    Background: We report on the study design and protocols of two randomized controlled trials (Acupuncture Randomized Trials = ART) that investigate the efficacy of acupuncture in the treatment of chronic low back pain and osteoarthritis of the knee, respectively. Objective: To investigate whether acupuncture is more efficacious than (a) no treatment or (b) minimal acupuncture in the treatment of low back pain and osteoarthritis. Design: Two randomized, controlled, multicenter trials with three treatment arms and a total follow-up time of 52 weeks. Setting: 30 practitioners and outpatient units in Germany specialized in acupuncture treatment. Patients: 300 patients will be included in each study. In the low back pain trial, patients will be included according to clinical diagnosis. In the osteoarthritis pain trial, patients will be included according to the American College of Rheumatology criteria. Interventions: Patients are randomly assigned to receive either (1) semi-standardized acupuncture (150 patients), (2) minimal acupuncture at non-acupuncture points (75 patients), or (3) no treatment for two months followed by semi-standardized acupuncture (75 patients, waiting list control). Acupuncture treatment consists of 12 sessions per patient over a period of 8 weeks. Main Outcome Measure: The main outcome measure is the difference between baseline and the end of the 8-week treatment period in the following parameters: pain intensity as measured by a visual analogue scale (VAS; 0-100 mm) in the low back pain trial and by the Western Ontario and McMaster Universities Osteoarthritis Score (WOMAC) in the osteoarthritis trial. Outlook: The results of these two studies (available in 2004) will provide health care providers and policy makers with the information needed to make scientifically sound assessments of acupuncture therapy

    Phase transition and hybrid star in a SU(2) chiral sigma model

    Get PDF
    We use a modified SU(2) chiral sigma model to study nuclear matter at high density using mean field approach. We also study the phase transition of nuclear matter to quark matter in the interior of highly dense neutron stars. Stable solutions of Tolman-Oppenheimer-Volkoff equations representing hybrid stars are obtained with a maximum mass of 1.69 MM_{\odot}, radii around 9.3 kms and a quark matter core constituting nearly 55-85 % of the star radii.Comment: 19 pages, 9 figures, accepted for Mod. Phys. Letts.

    Graphene Transport at High Carrier Densities using a Polymer Electrolyte Gate

    Full text link
    We report the study of graphene devices in Hall-bar geometry, gated with a polymer electrolyte. High densities of 6 ×1013/cm2\times 10^{13}/cm^{2} are consistently reached, significantly higher than with conventional back-gating. The mobility follows an inverse dependence on density, which can be correlated to a dominant scattering from weak scatterers. Furthermore, our measurements show a Bloch-Gr\"uneisen regime until 100 K (at 6.2 ×1013/cm2\times10^{13}/cm^{2}), consistent with an increase of the density. Ubiquitous in our experiments is a small upturn in resistivity around 3 ×1013/cm2\times10^{13}/cm^{2}, whose origin is discussed. We identify two potential causes for the upturn: the renormalization of Fermi velocity and an electrochemically-enhanced scattering rate.Comment: 13 pages, 4 figures, Published Versio
    corecore